Synthesis of Aminomethylazetidines Regioselective Reactions of Mesyloxymethylazetidinones with Nucleophiles II.

Éva Boros^{a*}, Ferenc Bertha^a, Gábor Czira^b, Antal Feller^c, József Fetter^a, Mária Kajtár-Peredy^d, Gyula Simig^c

^aDepartment of Organic Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary ^bGedeon Richter Chemical Works Ltd, H-1475 Budapest 10, Hungary

'EGIS Pharmaceuticals Ltd., Chemical Research Division, H-1475 Budapest 10, Hungary

^dInstitute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, Hungary

Received July 11, 2005

Two efficient methods have been developed for the synthesis of variously substituted 2-aminomethylazetidine derivatives **5** by regioselective nucleophilic substitution of 4-mesyloxymethylazetidin-2-ones **3** followed by reduction or by reduction of the appropriate 4-oxo-azetidine-2-carboxamides **7**. A novel ring transformation of 4-oxoazetidine-2-carboxamides **7** into tetrahydroquinolines **16** by reaction with lithium aluminium hydride / aluminium trichloride has been investigated.

J. Heterocyclic Chem., 43, 371 (2006).

Introduction.

Several compounds containing two or more heteroatoms in positions 1,4 or 1,5 to each other are well known antidepressants (Fluoxetine [1]. Paroxetine [2]. Reboxetine [3]). As the azetidine ring is a frequently occurring important constituent of drug molecules with similar effects on the central nerve system [4,5], investigation of azetidine derivatives containing heteroatoms in their side chains was expected to lead to promising drug candidates.

Here we report the successful syntheses of 2-(*N*,*N*-disubstituted aminomethyl)azetidines 5^{\dagger} by reacting 4-mesyloxymethylazetidinones **3** with secondary amines, followed by [7] reduction of the resulting 4-(*N*,*N*-disubstituted aminomethyl)azetidin-2-ones **4** (see Scheme 1).

Attempts to prepare 1-unsubstituted analogues 11 of the compounds 5, and their 1-alkyl derivatives (12, 13), by removal of the 4-methoxyphenyl group met with failure (see below). Therefore an alternative method for the preparation of compounds 11-13 starting from the

appropriate 4-oxoazetidine-2-carboxamides 7 was devised (see Scheme 2).

Results and Discussion.

3-Aryloxy-4-mesyloxymethylazetidin-2-ones 3 were synthesised from compounds **1a-c** via compounds **2a-c** (Scheme 2). The reaction of compounds 3 with secondary amines[‡] afforded the 4-aminomethyl-3-aryloxyazetidin-2ones **4a-m**, whose reduction with lithium aluminium hydride/aluminium trichloride gave 2-aminomethylazetidine derivatives **5** in good yields (Table 1).

Since compounds **5** could not be converted into the *N*unsubstituted analogues **11** by cerium ammonium nitrate, an alternative method for the synthesis of these compounds (**11**), and *N*-methyl (**12**) and *N*-benzyl (**13**) derivatives, from the oxoazetidinecarboxamides **7** as key intermediates was elaborated (see Scheme 2). The 1-(4-methoxyphenyl)-4-oxoazetidine-2-carboxyamides **7** smoothly underwent cerium ammonium nitrate induced *N*-(demethoxyphenylation) to afford the desired compounds **8**. Alkylation of compounds **8** followed by reduction of the lactam and

Synthesis of aminomethylazetidines 5 from azetidinecarbaldehydes 1 [7-9]

Yields	and melting points	s of compounds 4 and 5 synthesised	by the method ind	icated in Scheme
Compound	\mathbf{R}^1	HNR ² R ³	Yield [%]	Mp [°C]
4a	Cl	piperidino	64	147-151 ^a
4b	Cl	morpholino	50	147-148
4c	F	piperidino	81	142
4d	F	morpholino	84	124
4e	F	<i>N</i> -methylpiperazino	69	143
4f	F	N-benzylpiperazino	63	126
4g	CH ₃ O	pyrrolidino	38	133
4h	CH ₃ O	piperidino	66	147
4i	CH ₃ O	morpholino	56	167 ^b
4j	CH ₃ O	thiomorpholino	88	178
4k	CH ₃ O	<i>N</i> -methylpiperazino	77	145
41	CH ₃ O	benzylmethylamino	67	100
4m	CH ₃ O	hexamethylenimino	75	120
5a	Cl	piperidino	73	88-92°
5b	Cl	morpholino	55	132-134 ^d
5c	F	piperidino	58	103-104
5d	F	morpholino	61	118
5e	F	<i>N</i> -methylpiperazino	43	103
5f	F	<i>N</i> -benzylpiperazino	62	135-136°
5g	CH ₃ O	pyrrolidino	27	63-64
5h	CH ₃ O	piperidino	43	80-81
5i	CH ₃ O	morpholino	74	99
5j	CH ₃ O	thiomorpholino	76	98
5k	CH ₃ O	<i>N</i> -methylpiperazino	79	95
51	CH ₃ O	benzylmethylamino	76	oil
5m	CH ₂ O	hexamethylenimino	44	oil

 Table 1

 ields and melting points of compounds 4 and 5 synthesised by the method indicated in Scheme 1.

Recrystallized from ^a acetonitrile, ^b toluene, ^c isopropyl alcohol, ^d methanol, ^e ethanol respectively.

amide carbonyl group gave the desired azetidines **12-13** in red good yields. By reaction of compounds **8** with lithium be aluminium hydride/aluminium trichloride – depending on allo the reaction time – along with the desired **11**, partly dec Scheme 2

0

reduced intermediates **14** were also isolated, which could be reduced into **11** in a second reaction step. When allowing the reduction to go to completion, the yield of **11** decreases – presumably due to decomposition.

 $R^1 = CI, F, CH_3O$

	Yields and melting p	points of compoun	ds 11-14 obtained b	by the method sho	wn in Scheme 2
--	----------------------	-------------------	---------------------	-------------------	----------------

Compound	\mathbb{R}^1	NR^2R^3	\mathbb{R}^4	Yield [%]	Mp [°C]
11a	Cl	pyrrolidino	Н	33	105
11b	Cl	piperidino	Н	23+20% 14	183
11c	Cl	hexamethylenimino	Н	28+25% 14	181ª
11d	F	pyrrolidino	Н	20	oil
11e	F	piperidino	Н	25+26% 14	110
11f	F	hexamethylenimino	Н	28+31% 14	193ª
12a	Cl	pyrrolidino	methyl	70	184-186 ^a
12b	Cl	piperidino	methyl	64	170-174 ^a
12c	Cl	hexamethylenimino	methyl	68	140-145ª
12d	F	pyrrolidino	methyl	80	180-184ª
12e	F	piperidino	methyl	72	155-160 ^a
12f	F	morpholino	methyl	88	172-177 ^a

Compound	\mathbb{R}^1	NR^2R^3	\mathbb{R}^4	Yield [%]	Mp [°C]
12g	F	hexamethylenimino	methyl	68	150-153ª
13a	Cl	pyrrolidino	benzyl	63	78
13b	Cl	piperidino	benzyl	65	oil
13c	Cl	hexamethylenimino	benzyl	63	oil
13d	F	pyrrolidinol	benzyl	60	70
13e	F	piperidino	benzyl	50	62
13f	F	hexamethylenimino	benzyl	57	79

Table 2 (continued)

^a Recrystallized from CH₃OH/(C₂H₅)₂O.

In order to extend the latter method to the synthesis of compounds **5** as well, compounds **7** were reacted with lithium aluminium hydride/aluminium trichloride. Unfortunately, in a similar case of compounds **8**, this reaction afforded the reduced aminomethylazetidines **5** in low yields together with partly reduced intermediates **15** and unexpected ring transformation products **16** (Table 3).

374

N-Arylazetidin-2-ones have previously been shown to undergo a Fries-type rearrangement: a Lewis acid catalysed cleavage of the N-C(O) bond followed by intramolecular acylation, resulting in the corresponding 2,3-dihydro-4(1H)quinolinones [11-14], but no azetidinone-tetrahydroquinoline rearrangement has been reported yet. From the reaction mixtures of compounds 7 with lithium aluminium hydride/ aluminium trichloride we have never isolated an intermediate dihydroquinolinone, and formation of tetrahydroquinolines has never been observed [11-14] on treatment of N-arylazetidin-2-ones with Lewis acids alone. Therefore it appears to be reasonable to assume that, in agreement with the mechanism suggested for the lithium aluminium hydride/ aluminium trichloride reduction of azetidine-2-ones [6], the novel reductive N-arylazetidin-2-one - tetrahydroquinoline rearrangement takes place via the mesomeric cationic intermediate $\mathbf{a} \rightarrow \mathbf{b}$ as shown in Scheme 3.

This new ring transformation reaction constitutes a new method for the synthesis of chiral tetrahydroquinoline derivatives in a stereoselective manner.

 Table 3

 Products and yields in the reduction of oxoazetidinecarboxamides 7.

Starting compound	\mathbb{R}^1	NR ² R ³	(15)	Yield [9 (16)	%] (5)
7a	Cl	pyrrolidino	-	20	42
7b	Cl	morpholino	-	17	44
7f	Cl	diisopropylamino	12	43	11
7g	F	pyrrolidino	-	15	36
7j	F	diisopropylamino	14	39	10
71	CH_3O	pyrrolidino	-	12	32
7m	CH_3O	dibenzylamino	-	33	37
7n	CH_3O	diethylamino	-	14	31
70	CH_3O	diisopropylamino	18	35	3

Conclusions.

Thirty-three new aminomethylazetidinones were synthesised as potential effective drug candidates. Two synthetic methods have been developed for the preparation of these compounds. Thirteen 2-aminomethyl-3-aryloxy-1-(4-methoxyphenyl)azetidines have been synthesised by regioselective nucleophilic substitution of the corresponding 4-mesyloxymethylazetidinones and twenty analogous compounds containing a substitutent other than 4-methoxyphenyl at the ring nitrogen by reduction of the appropriate oxoazetidinecarboxylic amide. Ten chiral tetrahydroquinolines were synthesised by a novel ring transformation of *N*arylazetidinones.

EXPERIMENTAL

Abbreviations: Mesyloxy: methylsulfonyloxy. Techniques: All reactions were monitored by thin layer chromatography (DC-Alufolien 60 F254, Merck; visualized by UV254, and/or UV366 irradiation and/or by dipping into phosphormolybdic acid soln., followed by heating), and allowed to go to completion. Separations of product mixtures by flash column chromatography were carried out using Kieselgel 60 G (Merck) as the adsorbent unless otherwise stated (pressure differences between the two ends of the columns 67-75 kPa). For preparative thin layer chromatography separations 20x20 cm glass plates coated with Kieselgel PF254+366 (Merck; thickness of adsorbent layer 2.0 mm) were used (home-made ones, except when otherwise noted). The solvents are given in parentheses. The purity of the products was checked in combination with IR spectroscopy, by thin layer chromatography on DC-Alufolien 60 F₂₅₄ (Merck); the individual compounds were detected by UV irradiation. Evaporations to dryness were carried out at reduced pressure. All new compounds described in the present paper were colourless crystals, unless otherwise stated. Melting point values were determined on a Kofler hot-stage melting point apparatus and are uncorrected. IR spectra were recorded on a Specord-75 or Specord M-80 spectrometer (Zeiss, Jena), measured as film (in the case of oils) or potassium bromide pellets (in the case of crystalline compounds), absorption bands are in cm⁻¹. NMR spectra were obtained with a Varian XL-400 (¹H: 400 MHz, ¹³C: 100 MHz) spectrometer, chemical shifts (δvalues) are reported in ppm with respect to Me₄Si (δ = 0 ppm) as

the internal standard, coupling constants (J) are given in Hz. Exact molecular mass determinations were made at 70 eV with a Finnigan-MAT 95 SQ hybride – tandem instrument using a heated direct inlet system and perfluorokerosene as the reference.

General Procedure for the Synthesis of *cis*-4-(Hydroxymethyl)-azetidin-2-ones **2a-c**.

To a solutions of 4-formyl β -lactams **1a-c** [7-9] (54.37 mmoles) in methanol (160 ml) was added sodium borohydride (65.25 mmoles) in small portions with vigorous stirring and external ice-cooling. The resulting mixture was stirred at room temperature until complete reaction. After evaporation of the solvent at reduced pressure, the residue was washed with water (200 ml) and extracted with dichloromethane (3×70 ml). The combined organic layers were dried on magnesium sulfate and evaporated to yield the corresponding compounds **2** that were recrystallized from ethyl acetate or diethyl ether. In the case of **2b** and **2c**, the products were filtered directly from the reaction mixture after cooling (Table 4).

General Procedure for the Synthesis of the 3-Aryloxy-1-(4methoxyphenyl)-2-oxoazetidin-4-ylmethyl methanesulfonates **3a-c**.

Methanesulfonyl chloride (62.66 mmoles) was added dropwise to solutions of compounds 2 (52.22 mmoles) in pyridine (52 ml) with continuous stirring and external icecooling. The mixture was stirred at room temperature for 2 hours, then poured onto ice to obtain pure crystalline products 3 (Table 4).

General Procedure for the Synthesis of the Aminomethylazetidin-2-ones **4**.

To solutions of compounds **3** (0.625 mmoles) in acetonitrile or dimethyl formamide (1.6 -2 ml) was added 3.1 mmoles of the appropriate amine at room temperature. The reaction mixture was refluxed until complete reaction and evaporated *in vacuo*. The residue was washed with water and with 1 *M* sodium hydroxide solution. The crystalline product was filtered and purified by flash chromatography (dichloromethane:aceton = 10:0.5 or cyclohexane:ethyl acetate =3:1).

In the case of **4a-c**, **e**, **f**, **g**, **j** the crystalline products were filtered directly from the reaction mixture after cooling (Table 1 and Table 5).

General Procedure for the Synthesis of the Aminomethylazetidines **5**.

a.) To a solution of aluminium trichloride (15 mmoles) in anhydrous ether was added lithium aluminium hydride (15 mmoles). After refluxing for 50 minutes, 5 mmoles **4** was added, and the reaction mixture was refluxed until complete reaction (~4 hours). After cooling 20 ml ethyl acetate and 10 ml 10 *M* sodium hydroxide was added to the reaction mixture followed by 10 minutes stirring. The inorganic phase was then extracted with ethyl acetate (3×30 ml). The organic phase was dried on magnesium sulfate and evaporated *in vacuo*. The residue was purified by flash chromatography (dichloromethane:aceton = 10:0.1->10:0.5) (Table 6)

b.) To a solution of aluminium trichloride (120 mmoles) in anhydrous ether (590 ml) was added lithium aluminium hydride (120 mmoles) under argon at room temperature. After 1 hour reflux, 40 mmoles of the azetidinone compound 7 was added, and the reaction mixture was refluxed until complete reaction (3-5 hours). After addition of 1 M sodium hydroxide (270 ml) at 0 °C, the reaction mixture was stirred for 20 minutes. The white precipitate was filtered, and the separated inorganic layer was extracted with ether (3×100 ml) and with ethyl acetate (3×80 ml).

The combined ether phases were dried on magnesium sulfate and evaporated *in vacuo*. The residue was crystallised with ether to give partly reduced products **15**. The filtrate was purified by flash chromatography (dichloromethane:aceton = 7:0.1->7:1) to give products **5** and **16**.

The combined ethyl acetate phases were dried on magnesium sulfate and evaporated *in vacuo*. The residue was crystallised from diethyl ether to give products **15** (Tables 6, 13 and 14).

General Procedure for the Synthesis of Azetidinone Carboxyamides 7.

To carboxylic acid $\mathbf{6}$ (50 mmoles) was added 120 ml thionyl chloride, and the reaction mixture was refluxed for 1 hour. Excess of the reagent was evaporated *in vacuo*. The acid chloride was dissolved in dichloromethane (100 ml) and added dropwise to a solution of the appropriate amine in dichloromethane (100 ml) with stirring and external ice cooling. After 30 minutes stirring, the reaction mixture was washed with 80 ml of water and 1 *M* hydrochloric acid. The organic phase was dried on magnesium sulfate and evaporated *in vacuo*. The residue was crystallised from diethyl ether (Table 7).

General Procedure for the Synthesis of *N*-Unsubstituted 4-oxoazetidinecarboxylic Amides **8**.

A solution of cerium ammonium nitrate (42.4 g) in water (300 ml) was added dropwise to a solution of the appropriate amide **7** (35 mmoles) in 240 ml of acetonitrile at -10 °C. The reaction mixture was stirred for 20 minutes then 300 ml of ethyl acetate was added. The separated inorganic phase was extracted with ethyl acetate (3×100 ml). The combined organic phases were washed with 10% sodium hydrogen sulfite (200 ml), water (200 ml) and concentrated sodium chloride (100 ml), dried on magnesium sulfate, and evaporated *in vacuo*. The residue was purified by flash chromatography (dichloromethane:aceton = $10:1\rightarrow 2:1$).

In the case of morpholine derivative 8e, the product crystallised directly from the reaction mixture after 5 minutes stirring. The filtrate was washed with concentrated sodium bicarbonate (50 ml), 10% sodium hydrogen sulfite (100 ml), 0.5 *M* sodium hydroxide (150 ml) and water (100 ml), then dried on magnesium sulfate and evaporated *in vacuo*. The residue was crystallised from ethyl acetate (Table 8).

General Procedure for the Synthesis of 1-Alkyl-4-oxoazetidinecarboxamides 9 and 10.

To a solution of compound **8** (30 mmoles) in dry dimethyl formamide was added methyl iodide (90 mmoles) or benzyl bromide (90 mmoles) and 60% sodium hydride (33 mmoles) under argon at 0 °C. The reaction mixture was stirred at 0 °C for 1.5 hours (methyl iodide) or for 45 minutes (benzyl bromide), then poured onto water (1100 ml), and extracted with dichloromethane (4×100 ml). The combined organic layers were stirred with water (100 ml) giving an emulsion that was treated

with charcoal and filtrated. The separated organic layer was dried on magnesium sulfate and evaporated *in vacuo*.

a.) In the case of methylation the residue was dissolved in ethyl acetate (150 ml), treated with charcoal and evaporated *in vacuo*. The resulting colourless crystals were washed with ether and recrystallised from ethyl acetate.

b.) In the case of benzylation, the residue was purified by flash chromatography (hexane:ethyl acetate = $3:1 \rightarrow 1:1$), and the product was crystallised from diethyl ether.

General Procedure for the Synthesis of Azetidines **11-12** (Hydrochloride Salts), **13** and **14**.

To a solution of aluminium trichloride (65 mmoles) in anhydrous ether (360 ml) was added lithium aluminium hydride (100 mmoles) under argon at 0 °C. After refluxing for 1 hour, 20 mmoles of the azetidinones **8-10** was added, and the reaction mixture was refluxed for 3-5 hours. After addition of 1 M sodium hydroxide (220 ml) at 0 °C, the reaction mixture was stirred for 20 minutes. The white precipitate was filtered, and the separated inorganic layer was extracted with diethyl ether (4×100 ml). The combined organic phase was washed with cc. sodium chloride (200 ml), dried on magnesium sulfate and evaporated *in vacuo*.

a.) In the case of compounds 11 the residue (the partly reduced product 14) was crystallised from diethyl ether. The filtrate was flash chromatographed (dichloromethane:methanol = $10:0.1 \rightarrow 10:2$) to give pure products that were then transformed to their hydrochloride salt with etheric hydrochloric acid solution.

b.) In the case of compounds 12 the residue was dissolved in hexane, treated with charcoal and evaporated *in vacuo*. The resulting colourless oil was dissolved in methanol (10 ml). 2.1 eq. hydrochloric acid (5 *M* solution in diethyl ether) and 30 ml of ether was added to the solution to give crystalline product in good yields.

c.) In the case of compounds 13 the residue was purified by flash chromatography (hexane:diethyl ether = $10:1 \rightarrow 10:2$), and crystallised from hexane.

Acknowledgements.

The authors are grateful to Mrs. Katalin Ófalvy for the IR spectra. Financial assistance by EGIS Pharmaceutical Works (Budapest) is gratefully acknowledged.

REFERENCES AND NOTES

^{*} Corresponding author: Tel.: 00 44 28 9033 5420; fax: 00 44 28 9066 5297; e-mail: <u>eboros@mail.bme.hu</u>.

 $^{\uparrow}$ All chemical compounds discussed in the present paper are racemic and only one enantiomer is shown.

^{*} Application of ammonia instead of secondary amines in the aminolysis step (step 3, Scheme 1), resulted in cleavage of the lactam ring even at room temperature [10]. A study into the reaction of mesyloxymethylazetidinones (3) with primary amines is in progress.

[1] B. B. Malloy and K. K. Schmiegel, DE 2500110; US 4314081 (1975, 1982 both to Lilly); *Chem. Abstr.*, **83**, 192809d (1975) for each patent..

[2] P. Melloni et al., DE 2901032; eidem; US 4229449 (1979, 1980 both to Farmitalia Carlo Erba). *Chem. Abstr.*, **91**, 211426k (1979) for each patent.

Synthesis of Aminomethylazetidines Regioselective Reactions of Mesyloxymethylazetidinones

C₁₇H₁₆CINO₄ req.: 333.07679 found: 333.0771 C₁₈H₁₉NO₅ req.: 329.12630 found: 329.1255 C₁₈H₁₈FNO₆S req.: 395.08389 found: 395.0849 C₁₉H₂₁NO₇S req.: 407.13087 found: 407.10471 req.: 411.05434 found: 411.0541 HRMS m/z (EI) C₁₈H₁₈CINO₆S FB35 3620, 1745, 1490, 1220, 800 3630, 1730, 1490, 1360, 1210, 1000, 790 1750, 1500, 1350, 1220, 1155, 800 1750, 1500, 1360, 1220, 1165, 920, 800 1750, 1200, 1350, 1210, 1165, 920, 800 ⁵ Solvent: CDCl₃; 4-methoxyphenyl: 7.5 (m, 2", 6"-H), 6.9 (m, 3", 5"-H), 3.8 (s, OCH₃); ^b Recrystallized from CH₃OH, ^e CH₃OH/H₂O, ^d ethyl acetate 490, 1210, 770 3630, 1730, IR [cm⁻¹] ^{Rp} 119-120^b 139^b 132^{d} 103° 126^b 110 Yield [%] 88 74 66 91 81 91 OSO₂Me: 2.90, s OSO₂Me: 2.88, s OH: 2.06, dd, J_{OH,CH2}=5.5+7.5 s OSO₂Me: 2.90, OH: 2.16, s OH: 2.00, s ¥ , ОСН₃ 3.78, s 4"-OMe 3.77, s 2a -3a - c 6.86, m 3",5"-H 7.13, m 7.03, m 7.28, m 6.85, m 7.30, m 7.05, m 7.10, m 7.02, m 7.08, m 7.08, m 7.09, m 2",6"-H 4.60+4.67, 2dd, J_s=10.9 4.13+4.18, 2dd, J_s=12.5 4.11+4.16, 2dd, J_s=12.7 4.61+4.66, 2dd, J_s=11.3 4.61+4.68, 2dd, J_s=11.1 4.11+4.15, 2dd, J_s=12.7 $4-CH_2$ J_{4,CH2}=5.2+5.2 I_{4,CH2}=3.5+4.8 J_{4,CH2}=5.3+5.4 J_{4,CH2}=5.2+5.2 I_{4,CH2}=3.6+4.8 $J_{4,CH2}=3.6+4.7$ 4.67, ddd, 4.44, ddd, 4.73, ddd, 4.73, ddd, 4.71, ddd, 4.47, ddd 4-H 5.40, d, J_{3,4}=5.0 5.29, d, J_{3,4}=5.1 5.38, d, J_{3,4}=4.9 5.36, d, J_{3,4}=4.7 J_{3.4}=4.3 5.32, d, 5.33, d, J_{3,4}=5.1 3-H MeO MeO U Ū ĽL, × [T Comp. 2b **3**b **2a** 5 **3a** 36

Table 4 Table 3 Yields, Melting Points, IR, NMR^a and HRMS Data of Compounds 2 and 3 $\!\!\!\!$

S
e
ab
F

NMR^a, IR and HRMS Data or Elemental Analysis of Compounds 4

Comp.	R	3-H	4-H	$4-CH_2$	2",6"-H	3",5"-H	4"-OCH ₃	NR^2R^3	IR [cm ⁻¹]	Elemental analysis [%] or
4a	C	5.27 , d, $J_{3,4}=5.0$	4.44, ddd, J _{4,CH2} =4.6+6.6	2.75+2.89, 2dd, J _s =14.0	7.57, m	7.08, m		piperidino: 2.35-2.50+1.35-1.55, m	1741, 1500, 1390, 1210	C ₂₂ H ₂₅ CIN ₂ O ₃ (400.89) req.: C: 65.91, H: 6.29, N: 6.99 found: C: 65.83, H: 6.31, N: 7.05
4b	G	5.30, d, J _{3,4} =5.0	4.46, ddd, J _{4,CH2} =4.7+6.5	$2.82+2.86$, 2dd, $J_{g}=13.8$	7.27, m	7.07, m		morpholino: 2.42-2.58+ 3.54-3.66, m	1735, 1500, 1100, 800	C ₂₁ H ₂₂ CIN ₂ O ₄ (402.87) req.: C: 62.61, H: 5.75, N: 6.95; found: C: 62.47, H: 5.68, N: 6.74
4c	ц	5.25 , d, $J_{3,4}=5.0$	4.45, brm	2.76+2.85, 2brm	7.10, m	7.00, m		piperidino: 2.44+1.4-1.6, m	1745, 1500, 1380, 1210	C ₂₂ H ₂₅ FN ₂ O ₃ req.: 384.18492 found: 384.1845
4d	ц	5.27 , d, $J_{3,4}=5.0$	4.48, brm	2.9, brm	7.10, m	б.99, т		morpholino: 3.65+2.57, m	1730, 1500, 1210, 800	C ₂₁ H ₂₃ FN ₂ O ₄ req.: 386.16418 found: 386.1638
4e	ц	$5.26, d, J_{3,4}=5.1$	4.44, ddd, J _{4.CH2} =4.4+6.7	$2.83+2.90$, $2dd$, $J_g=13.8$	7.09, m	7.00, m		<i>N</i> -Me-piperazino: 2.25-2.65, m, 2.27, s	1735, 1500, 1390, 1210	C ₂₂ H ₂₆ FN ₅ O ₃ req.: 399.19582 found: 399.1948
4f	ц	5.25 , d, $J_{3,4}=5.0$	4.43, ddd, J _{4.CH2} =4.3+6.6	2.82+2.90, 2dd, J _s =13.9	7.06, m	6.98, т		<i>N</i> -Bn-piperazino: 7.2-7.35+3.50+2.35-2.65, m	1745, 1500, 1390, 1210	C ₂₈ H ₃₀ FN ₃ O ₃ req.: 475.22712 found: 475.2268
84 8	CH ₃ O	5.25, d, J _{3,4} =5.1	4.46, dt, J _{4.CH2} =5.4	3.03, d	7.08, m	6.84, m	3.78, s	lpyrrolidino: 2.60+1.76, m	1750, 1500, 1210, 800	C ₂₂ H ₂₆ N ₂ O ₄ req.: 382.18926 found: 382.1891
4h	CH ₃ O	5.23, d, J _{3,4} =5.1	4.43, ddd, J _{4.CH2} =4.7+6.2	2.75+2.85, 2dd, J _s =14.0	7.07, m	6.84, m	3.78, s	piperidino: 2.45+1.4-1.6, m	1750, 1500, 1390, 1220	C ₂₃ H ₂₈ N ₂ O ₄ req.: 396.20491 found: 396.2056
4i	CH ₃ O	5.26, d, J _{3,4} =4.9	4.44, ddd, J _{4,CH2} =4.4+6.3	2.82+2.91, 2dd, J _s =13.9	7.06, m	6.85, m	3.79, s	morpholino: 3.62+2.53, m	1750, 1500, 1220, 1100	C ₂₂ H ₂₆ FN ₂ O ₅ req.: 398.18417 found: 398.1850
4j	CH ₃ O	5.24 , d, $J_{3,4}=5.0$	4.41, ddd, J _{4,CH2} =4.2+6.8	$2.80+2.92$, $2dd$, $J_g=14.0$	7.05, m	6.85, m	3.78, s	tiomorpholino: 2.77+2.58, m	1755, 1500, 2220, 1010	C ₂₂ H ₂₆ N ₂ O ₄ S req.: 414.16133 found: 414.1619
4k	CH ₃ O	5.24 , d, $J_{3,4}=5.0$	4.43, ddd, J _{4,CH2} =4.5+6.5	2.82+2.92, 2dd, J _s =14.0	7.06, m	6.84, т	3.78, s	<i>N</i> -Me-piperazino: 2.57+2.38+2.27, m	1745, 1500, 1220, 800	C ₂₃ H ₂₉ N ₃ O ₄ req.: 411.21581 found: 411.2161
41	CH_3O	5.24, d, J _{3,4} =5.1	4.41 , ddd, $J_{4,CH2}=4.8+6.0$	2.93+2.98, 2dd, J _s =14.0	7.07, m	6.84, m	3.78, s	<i>N</i> -Me- <i>N</i> -benzylamino: 2.28; 3.50+3.61+7.2-7.32, m	1755, 1500, 1220, 1100	C ₂₆ H ₂₈ N ₂ O ₄ req.: 432.20491 found: 432.2053
4m	CH ₃ O	$5.24, d, J_{3,4}=5.1$	4.39, ddd, J _{4,CH2} =4.4+6.0	2.91+3.07, 2dd, J _s =14.2	7.07, m	6.85, m	3.78, s	hexamethilenimino: 2.70+1.60, m	1750, 1500, 12500, 12500, 1100, 800	C ₂₄ H ₃₀ N ₂ O ₄ req.: 410.22056 found: 410.2208
^a Solvent	: CDCl ₃ ; 4	f-methoxyp	henyl: 7.5 (m, 2",	6"-H), 6.9 (m, 3",	5"-H), 3.8 (s	s, OCH ₃)				

Table 6	IR, NMR ^a and HRMS Data or Elemental Analysis of Compounds 5 Synthesised by Reduction of Compounds 4 or 7
---------	---

DNR ² R ³	3	5a-r 5" 4" OCH3
Д 20 20 20 20 20 20 20 20 20 20 20 20 20	ñ	

Elemental analysis [%] or HRMS m/7 (Fl)	C ₂₂ H ₂₇ ClN ₂ O ₂ (386.92) req.: C: 68.29, H: 7.04, N: 7.24; found: C: 68.45, H: 6.93, N: 7.32	C ₂₁ H ₂₅ ClN ₂ O, (388.88) req.: C: 64.85, H: 6.48, N: 7.20; found: C: 64.76, H: 6.67, N: 7.08	C ₂₂ H ₂₇ FN ₂ O ₂ (370.46) req.: C: 71.33, H: 7.35, N: 7.56; found: C: 71.23, H: 7.18, N: 7.71	C ₂₁ H ₂₅ FN ₂ O ₃ (372.43) req.: C: 67.72, H: 6.77, N: 7.52; found: C: 67.62, H: 6.75, N: 7.57	C ₂₂ H ₃₈ FN ₃ O ₂ (385.47) req.: C: 68.55, H: 7.32, N: 10.90; ound: C: 68.33, H: 7.30, N: 10.77	C ₃₈ H ₃₂ FN ₃ O ₂ (461.57) req.: C: 72.86, H: 6.99, N: 9.10; found: C: 72.84, H: 6.84, N: 8.98	C ₂₂ H ₂₈ N ₅ O ₈ (368.47) req.: C: 71.71, H: 7.66, N: 7.60; found: C: 71.58, H: 7.68, N: 7.55	C ₂₃ H ₃₀ N ₂ O ₃ (382.50) req.: C: 72.22, H: 7.91, N: 7.32; found: C: 71.97, H: 7.71, N: 7.25	C ₂₂ H ₂₈ N ₂ O ₄ (384.47) req.: C: 68.73, H: 7.34, N: 7.29; found: C: 68.62, H: 7.30, N: 7.32	C ₂₂ H ₂₈ N ₂ O ₃ S (400.53) req.: C: 65.97, H: 7.05, S: 8.01; found: C: 66.10, H: 7.00, S: 7.80	C ₂₃ H ₃ (N ₃ O ₃ (397.51) req.: C: 69.49, H: 7.86, N: 10.57; ound: C: 69.19, H: 7.76, N: 10.40	C ₂₆ H ₃₀ N ₂ O ₃ (418.53) req.: C: 74.61, H: 7.22, N: 6.69; found: C: 74.36, H: 7.16, N: 6.77
IR [cm ⁻¹]	1510, 1490, 1240, 1100, 810	1510, 1490, 1220, 1100	1490, 1210, 800	1500, 1220, 1100, 805	1500, 1210, 800 f	1500, 1210, 800	2990, 1490, 1200, 1020, 800	1500, 1210, 800	1500, 1210, 1100, 800	1530, 1260, 1060, 830	1530, 1250 f	1500, 1210, 1010, 800
NR^2R^3	piperidino: 1.35-1.70, m	morpholino: 3.64-3.68, m	piperidino: 1.42-1.59, m	morpholino: 3.62-3.71, m	<i>N</i> -Me-piperazino: 2.41-2.63, m, 2.28, s	<i>N</i> -Bn-piperazino: 7.3, m, 3.51, s	pyrrolidino: 2.5-2.7+1.77-1.80, m	piperidino: 2.3-2.6+1.4-1.6, m	morpholino: 3.66-3.70+2.4-2.65, m	tiomorpholino: 2.6-2.9, m	<i>N</i> -Me-piperazino: 2.4-2.7, m, 2.29, s	<i>N</i> -Me- <i>N</i> -benzylamino: 2.29, s, 3.57=3.61, 2d, J _g =13.0, 7.22-7.35, m
4"-OCH ₃							3.75, s	3.75, s	3.76, s	3.75, s	3.75, s	3.75, s
3",5"-H	6.8, m	6.81, m	6.83, m	6.83, m	6.81, m	6.82, m	6.81, m	6.82, m	6.80, m	6.82, m	6.81, m	6.81, m
2",6"-H	7.2, m	7.24, m	6.94, m	6.94, m	6.97, m	6.96, m	6.81, m	6.82, m	6.80, m	6.82, m	6.81, m	6.81, m
2 -CH $_2$	2.70+3.05 2dd, J _g =13.5	2.74+3.05 2dd, J _s =13.7	2.69+3.05 2dd, J _s =13.5	2.75+3.07 2dd, J _s =14.0	2.76+3.09 2dd, J _s =13.5	2.75+3.10 2dd, J _s =13.5	2.90+3.28 2dd, J _s =13.5	2.72+3.08, 2dd, J _g =13.5	2.77+3.10 2dd, J _s =13.5	2.77+3.10 2dd, J _s =14.0	2.79+3.12 2dd, J _s =13.5	2.83+3.28 2dd, J _g =13.5
4-H	3.93+3.97, 2dd, J _g =8.5	3.92+3.96, 2dd, J _s =11	3.87+3.97, 2dd, J _s =8.5	3.91+4.00, 2dd, J _g =8.5	3.89+4.00, 2dd, J _g =8.6	3.88+3.98, 2dd, J _s =8.5	3.86+3.99, 2dd, J _s =8.7	3.86+3.97, 2dd, J _g =8.6	3.90+4.00, 2dd, J _s =8.5	3.88+4.00, 2dd, J _g =8.5	3.86+4.00, 2dd, J _s =8.5	3.85+3.96, 2dd, J _s =8.6
3-H	4.87, ddd, $J_{3,4}=6.5+2.5$ $J_{2,3}=6.0$	4.92, brdd, J _{3,4} =6.5+2.5	4.88, ddd, $J_{3,4}=6.0+2.5$ $J_{2,3}=6.0$	4.91, ddd, $J_{3,4}=6.5+2.5$ $J_{2,3}=6.5$	4.89, ddd, $J_{3,4}=6.5+2.5$ $J_{2,3}=6.5$	4.88, ddd, $J_{3,4}=6.5+2.5$ $J_{2,3}=6.5$	$4.90, ddd, J_{3,4}=6.0+2.5 J_{2,3}=6.0$	4.86, ddd, $J_{3,4}=6.0+2.5$ $J_{2,3}=6.0$	4.89, ddd, $J_{3,4}=6.5+2.5$ $J_{2,3}=6.5$	4.88, ddd, $J_{3,4}=6.5+2.6$ $J_{2,3}=6.5$	4.87, ddd, $J_{3,4}=6.5+2.5$ $J_{3,3}=6.5$	$4.89, ddd, J_{3,4}=6.2+2.5 J_{2,3}=6.4$
2-H	4.31, ddd, J _{2,CH2} =4.5+7.8	4.34, ddd, J _{2.CH2} =4.5+7.7	4.34, brddd, J _{2.CH2} =4+8	4.33, brddd, J _{2,CH2} =4.5+8	4.32, brddd, J _{2,CH2} =4.5+7.5	4.32, brddd, J _{2.Сн2} =4.5+7.5	4.33, ddd, J _{2,CH2} =4.0+8.0	4.33, ddd, J _{2.CH2} =4.0+7.5	4.33, ddd, J _{2,CH2} =4.0+7.5	4.30, ddd, J _{2,CH2} =4.5+7.5	4.33, ddd, J _{2,CH2} =4.5+7.5	4.30, ddd, J _{2.CH2} =4.0+7.6
R	G	ū	ĹЦ	ĹĻ	ĹЦ,	ĹЦ,	MeO	MeO	MeO	MeO	MeO	MeO
Comp.	5a	5b	5c	5d	Şe	5f	20	Sh	Si	Sj	5k	51

Synthesis of Aminomethylazetidines Regioselective Reactions of Mesyloxymethylazetidinones 379

Table 6 (continued)	2-H 3-H 4-H 2-CH ₂ 2",6"-H 3",5"-H 4"-OCH ₃ NR ² R ³ IR [cm ⁻¹] Elemental analysis [%] or HRMS m/z (EI)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} & 4.34, \ ddd, & 4.92, \ ddd, & 3.87+3.97, & 2.88+3.28, \ 2dd, & 6.97, & 6.81, & pyrrolidino: & 1500, 1230, & C_{21}H_{25}N_{2}O_{2}F \\ & J_{2,ch2}=3.9+8.4 & J_{3,3}=6.3+2.5 & 2dd, J_{g}=8.6 & J_{g}=13.2 & m & m & 2.66+2.54+1.77, m & 1190, 800 & found: 356.1900 \\ \end{array} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{ccccc} & 4.28, \mathrm{ddd}, & 4.90, \mathrm{ddd}, & 3.85+3.96, & 2.80+3.27 \mathrm{2dd}, & 6.75- & 6.75- & 3.77, & \mathrm{dicthylamino:} & 1510, 1210, & C_{22}H_{30}N_2O_9 \\ & & & & & & & & & & & & & & & & & \\ 1_{2,cH2}=4.1+7.6 & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Table 7 Yields, Melting Points, IR, NMR ^{ase} and HRMS Data or Elemental Analysis of Compounds 7	2. 3-H 4-H 2",6"-H 3",5"-H 4"-OCH3 NR ² R ³ Yield Mp IR [cm ⁻¹] Elemental analysis [%] or [%] [°C] IR [cm ⁻¹] HRMS m/z (EI)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \frac{5.75}{J_{3,2}=5.5} 5.42, d 7.14, m 7.31, m \qquad morpholino: \qquad 91 197^{\ell} 1510, 1600, \qquad C_{21}H_{21}N_{2}O_{5}C1 \\ 3.35-3.80, m \qquad 91 197^{\ell} 1510, 1490, \qquad req.: 416.1139 \\ 1200 \qquad found: 416.1143 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 5.44, d, 5.08, d 7.04, m 7.26, m \qquad hexamethylenimino: 1.4- 90 175^{*} 1650, 1510, req.: C: 64.41, H: 5.87, N: 6.53, CI: 8.27; \\ J_{3,2}=5.4 5.08, d 7.04, m 7.26, m \qquad 1.8+3.2-3.3+3.4-3.6, m \qquad 90 175^{*} 1650, 1510, req.: C: 64.41, H: 5.87, N: 6.53, CI: 8.27; \\ 1.8+3.2-3.3+3.4-3.6, m \qquad 1490, 1400, found-C: 64.40, H: 5.63, N: 6.55, CI: 8.31; \\ \end{array}$	z z_{z} 1,6-diMe-piperidino: 1780, 1640, C ₂₄ H ₂ /N ₂ O ₄ Cl
	2-H	4.28, ddd, J _{2,CH2} =4.0+7.7	4.21, brddd, J _{2.CH2} =5.4+6.3	4.34, ddd, J _{2.CH2} =3.9+8.4	4.34, ddd, J _{2.CH2} =3.8+8.3	4.28, ddd, J _{2.CH2} =4.1+7.6	4.19, ddd, J _{2,CH2} =3.3+8.2 nethoxyphenyl		3-H	5.47, d, J _{3,4} =5.3	5.75, d, J _{3,4} =5.5	5.41, d, J _{3,4} =5.5	5.44, d, J _{3,4} =5.4	5 45 4

380

Comp.	R	3-H	4-H	2",6"-H	3",5"-H	4"-OCH ₃	NR^2R^3	Yield [%]	GD [C]	IR [cm ⁻¹]	Elemental analysis [%] or HRMS m/z (EI)
76	C	5.45, d,	4 98 A	7 10 m	7 25 m		diisopropylamino: 3 86+3 55+1 49+1 46	86	7 38d	1790, 1650, 1510-1490	$C_{23}H_{27}N_2O_4CI$
	5	J _{3,4} =5.5	n. (o. 'F	····	III (CZ.)		+1.29 + 1.23	0	007	1240	found: 430.1660
		545 4					nvrrolidino:			3040, 1750,	$C_{2_1}H_{2_1}FN_2O_4$ (384.41)
7g	Ĺ	J _{3,4} =5.4	4.95, d	7.08, m	6.99, m		3.25-3.65+1.8-2.05	92	153°	1660, 1500, 1220-1190	req.: C: 65.62, H: 5.51, N: 7.29, F: 4.94; found: C: 65.38 H: 5.65 N: 7.37 F: 5.12
		r () y		¢ 0.2	¢ 0.3		piperidino:			2935, 1745,	C ₂₂ H ₂₃ FN ₂ O ₄ (398.43)
7ћ	ĹĻ	J₃,=5.5	5.10, d	0.93- 7.10, m	0.93- 7.10, m		$1.5 - 1.7 + \overline{3}.25 - 3.50 + 3.50 -$	69	145°	1652, 1504,	req.: C: 66.32, H: 5.82, N: 7.03, F: 4.77;
		1 1 t ² C 1					3.70, m			1406, 1251 2020, 1765	found: C: 66.35, H: 5.90, N: 7.00, F: 4.60
7i	ĹŢ	5.49 d,	5.16.d	7.12. m	7.00. m		morpholino:	88	167	2930, 1703, 1505 1380	C ₂ H ₂ N ₂ O ₅ F ren · 400 1434
1	I	J _{3,4} =5.4					3.35-3.85, m		•	1240, 830	found: 400.1433
		r (r y					diisoprpylamino:			1785, 1650,	$C_{23}H_{27}N_2O_4F$
7j	ĹL,	0.42 d,	4.98, d	7.12, m	6.98, m		3.88+3.55+1.48+1.46	94	257 ^d	1510, 1250,	req.: 414.1955
		J _{3,4} =J. +					+1.30 + 1.24			1205	found: 414.1947
		5 10 4		6 00	6 00		hexamethylenimino:			2995, 1750,	$C_{23}H_{25}FN_2O_4$ (412.46)
7k	ĹТ.	1 -5.5	5.07, d	-06-0 7 10 m	-00		1.4-1.8+3.21-3.32+3.45-	6	152 ^e	1650, 1500,	req.: C: 66.98, H: 6.11, N: 6.79, F: 4.61;
		U3,4-U.					3.66, m			1450, 1390	found: C: 66.70, H: 6.10, N: 6.87, F: 4.50
F	1100	5.43, d,		- 10 5	- 60 7		pyrrolidino:	0 [125[1740, 1660,	$C_{22}H_{24}N_2O_5$
	с Г ОО	J _{3,4} =5.4	4.72, U	/.0 4 , III	0.02, III	5.11.0	3.25-3.6+1.6-2.0	0/	ccl	1505, 1230	found: 396.1685
		5 74 2					dibenzylamino:		145	1780, 1690,	$C_{32}H_{30}N_2O_5$
7 m	OCH ₃	0.04, 0, I _5 4	5.04, d	6.93, m	6.78, m	3.77, s	3.84+5.63, 4.31+4.54,	78	-0+1 146	1510, 1400,	req.: 522.2155
		J3,4-J.4					7.25-7.5			1230	found: 522.2146
		5 40 4					diethylamino:			1770, 1650,	$C_{22}H_{26}N_2O_5$
7 n	OCH ₃	15.4	5.02, d	7.06, m	6.83, m	3.77, s	3.78+3.38+3.24	86	186^{i}	1500, 1400,	req.: 398.1842
		v3,4-v.1					+3.19+1.27+1.19			1240, 1210	found: 398.1839
		540.4					diisopropylamino:			1775, 1650,	$C_{24}H_{30}N_2O_5$
70	0CH3	L. =5.4	4.96, d	7.09, m	6.83 , m	3.76, s	3.88 + 3.54 + 1.48 + 1.46	78	187 ^e	1510, 1230,	req.: 426.2155
		3 ,4-0.1					+1.29+1.24			1210	found: 426.2157
^a Solvent.	: CDCI ₃ , ⁵	CDCI,+DMS	O; ^c 4-metho	xyphenyl: 7	7.31, (m, 2",	6"-H), 6.87 (n	n, 3",6"-H), 3.78, (s, OCH ₃);	d Recrys	stallized	from dioxane,	° ethyl acetate, ^f methanol, ^g ethanol
	2	\$		•••				•			

Table 7 (continued)

Table 8	Yields, Melting Points, IR, NMR $^{\rm a}$ and HRMS Data or Elemental Analysis of Compounds 8
---------	---

Comp.	Ŗ	HN	2-H	3-H	2",3",5",6"-H	NR^2R^3	Yield [%]	Mp [°C]	IR [cm ⁻¹]	Elemental analysis [%] or HRMS m/z (El)
8a	ū	8.84, br s	4.65, d, J _{2.3} =5.0	5.72, dd, J _{3.NH} =1.5	7.09-7.37, m	pyrrolidino: 1.59-1.81+3.00- 3.10+3.28-3.45, m	LT T	207 ^b	3520, 1780, 1630, 1490, 1225, 810	C ₁₄ H ₁₅ ClN ₂ O ₃ (294.74) req.: C: 57/05, H: 5.13, N: 9.50, Cl: 12.03; found: C: 57/01, H: 5.07, N: 9.33, Cl: 12.10
8b	ū	6.70, br s	4.69, d, J ₂₃ =5.2	5.44, dd, J _{3.NH} =1.4	7.06-7.25, m	piperidino: 1.50-1.75+3.20- 3.40+3.60-3.75, m	60	126- 128°	3290, 1770, 1620, 1480, 1220, 780	C ₁₅ H ₁₇ ClN ₅ O ₃ (308.76) req.: C: 58.35, H: 5.55, N: 9.07, Cl: 11.48; found: C: 58.05, H: 5.74, N: 9.35, Cl: 11.33
8c	ū	8.80, br s	4.78, d, J ₂₃ =5.1	5.71, dd, J _{3.NH} =1.5	7.08-7.37, m	hexamethylenimino: 1.30-1.70+3.11- 3.23+3.36-3.57, m	76	209 ⁶	3290, 3000, 1770, 1620, 1480, 1220	C ₁₆ H ₁₉ CIN ₅ O ₃ (322.79) req.: C: 59.94, H: 5.93, N: 8.68, Cl: 10.98; found: C: 59.59, H: 5.81, N: 8.72, Cl: 10.75
9 q	ц	7.80, br s	4.61, d, J ₂₃ =5.0	5.40, dd, J _{3.NH} =1.5	6.90-7.10, т	pyrrolidino: 1.8-2.0+3.20-3.30+3.35- 3.50+3.52-3.60, m	46	169°	3280, 1770, 1620, 1500, 1180, 800	C ₁₄ H ₁₅ FN ₂ O ₃ (278.28) req.: C: 60.43, H: 5.43, N: 10.07, F: 6.83; found: C: 60.29, H: 5.60, N: 10.02, F: 7.00
8e	ц	6.70, br s	4.69, d, J ₂₃ =5.2	5.42, dd, J _{3.NH} =1.4	6.90-7.20, т	piperidino: 1.60-1.70+3.20- 3.40+3.60-3.80, m	74	208°	3566, 3106, 2945, 1740, 1630, 1500	C ₁₈ H ₁₇ EN ₂ O ₃ (292.31) req.: C: 61.63, H: 5.86, N: 9.58, F: 6.50; found: C: 61.48, H: 5.84, N: 9.44, F: 6.30
8f	ц	8.80, brs	4.82, d, J _{2.3} =5.0	5.62, dd, J _{3.NH} =1.5	7.05-7.14, m	morpholine: 3.20-3.70, m	77	225- 230 ⁶	3250, 1760, 1640, 1500, 1210, 1100	C ₁₄ H ₁₅ N ₂ O ₄ F req.: 294.1016 found: 294.1018
88	щ	7.35, br s	4.70, d, J _{2.3} =5.0	5.41, dd, Ј _{3.NH} =1.6	6.90-7.10, m	hexamethylenimino: 1.45-1.95+3.20-3.30+ 3.40-3.60+3.70-3.80, m	71	205- 206°	3300, 3020, 1790, 1640, 1520, 1225	C ₁₆ H ₁₉ FN ₂ O ₃ (306.34) req.: C: 62.73, H: 6.25, N: 9.14, F: 6.20; found: C: 62.70, H: 6.21, N: 9.17, F: 6.12

 a Solvent: CDCl₃; ^b Recrystallized from ethyl acetate, ^c acetonitrile, ^d ethanol, ^e methanol

382

					R ¹ 4.	N R ⁴	Ł		
					9a 10	-g (R ⁴ = CH ₃) a-f (R ⁴ = CH ₂ C	₆ H ₅)		
Comp.	R'	2-H	3-H	2",3",5",6"-H	NR^2R^2	Yield [%]	Mp [°C]	IR [cm ⁻¹]	Elemental analysis [%]
da ^b	C	4.49, d,	236 4	m 66 7440 7	pyrrolidino:	55	1074	1770, 1660,	C ₁₅ H ₁₇ ClN ₂ O ₅ (308.76)
80	5	$J_{2,3}=5.0$	n for r	111 177 / 1407	+3.26-3.47+3.48-3.64, m	~	101	1420, 1230	found: C: 58,58, N: 9,15, CI: 11,51
arb	ξ	4.86, d,	P 07 5	- 02 2101 2	piperidino:	07	DALL ALL	1770, 1660,	C ₁₆ H ₁₉ CIN ₂ O ₃ (322.79)
06	5	$J_{2,3}=5.0$	D'60'C	ш,ос./+U1./	3.15-3.60, m	00	-C/1-+/1	1490, 1480, 1420, 1240	req.: C: 39.24, N: 8.08, CI: 10.98; found: C: 59.25, N: 8.62, CI: 10.74
0 .b	ξ	4.61, d.	1 26 3		hexamethylenimino:	v r	155 157d	2940, 1760,	C ₁₇ H ₂₁ ClN ₂ O ₃ (336.82)
X	5	$J_{2,3}=5.0$	n 'oc.c	III 'C7'/+00'/	3.35-3.45+3.50+3.65, m	0/	101-001	1420, 1250	fequ. C: 60.646, H: 6.22, N: 6.32, CI: 10.33; found: C: 60.46, H: 6.22, N: 8.33, CI: 10.58
ļ		4 49 d			pyrrolidino:			1750, 1650,	C ₁₅ H ₁₇ FN ₂ O ₃ (292.31)
°b9	ц	$J_{2,3}=5.0$	5.34, d	6.90-7.10, m	1.8-2.1+3.20-3.30+ 3.35-3.45±3.50-3.65 m	60	1304	1505, 1480,	req.: C: 61.63, N: 9.58, F: 6.50; found: C: 61.01 N: 0.50 E: 6.24
					piperidino:			1760, 1660,	CleH19FN,O306.34)
9e ^b	Ŀ	4.61, d. 1=5 0	5.32, d	6.93-7.12, m	1.55-1.65+3.15-	75	158 ^d	1500, 1420,	req.: C: 62.73, N: 9.14, F: 6.20;
		n-1-52r			3.30+3.60-3.65, m			1205,800	found: C: 62.93, N: 9.14, F: 6.46
arb	μ	4.60, d.	5 32 A		morpholino:	60	3021	1760, 1670,	C ₁₅ H ₁₇ FN ₂ O ₄ (308.31)
K	-	$J_{2,3}=5.0$	n 'cc'c	III 'CT: 1-00:0	3.25-3.45+3.50-3.85, m	8	0/1	1420, 1205	found: C: 58.73, N: 9.13, F: 5.85
		1 61 4			hexamethylenimino:			1760, 1650,	C ₁₇ H ₂₁ FN ₂ O ₃ (320.36)
$9g^{\rm b}$	ц	J, =5.0	5.34, d	6.90-7.15, m	1.5-1.8+3.20-3.30+	75	110 ^d	1500, 1420,	req.: C: 63.74, N: 8.74, F: 5.93;
		1			3.35-3.45+3.50-3.70, m			1200, 800	found: C: 64.00, N: 8.82, F: 5.73
10a ^c	U	4.31, d,	5.33. d	7.04+7.23, m	pyrronumo. 1.8-2.03.1-3.30+3.45-3.7.	83	144	1490, 1460,	C2(H2(H2)C) (304.00) req.: C: 65.54, H: 5.50, N: 7.28, CI: 9.21;
		J _{2,3} =5.0			E			1410, 1250	found: C: 65.48, H: 5.56, N: 7.24, CI: 9.27
1015	ε	4.43, d,	531 4	m 70847 24 m	piperidino:	36	148	1780, 1640, 1450,	C ₂₂ H ₂₃ CIN ₂ O ₃ (398.89) rear C 66 24 H· 5 81 N· 7 02 CI· 8 89·
-	5	$J_{2,3}=5.0$	n 11/1/2	W	m	2		1400, 1260	found: C: 66.02, H: 5.76, N: 6.87, CI: 8.58
2.01	ξ	4.38, d,			hexamethylenimino:	07	001 701	1780, 1650,	C ₂₃ H ₂₅ CIN ₂ O ₃ (412.92)
100	5	$J_{2,3}=5.2$	D,1C.C	ш, 77./+00./	3.55+3.65-3.80, m	00	QC1-0C1	1400, 1240, 1400, 1240	req.: C: 00.90, H: 0.10, N: 0./8, CI: 8.39; found: C: 66.65, H: 6.02, N: 6.79, CI: 8.69
10d ^c	Ц	4.31, d.	531 4	m 17.0 A	pyrrolidino: 18.20431.33435537	89	211	1750, 1620, 1485 1430	$C_{21}H_{21}FN_2O_3$ (368.41) rear C 68.47 H 5 75 N 7 60 E 5 16
DOT	-	J _{2,3} =5.0	n tree	III (17/200		00		1390, 1320	found: C: 68.45, H: 5.75, N: 7.65, F: 5.27
3.01	Ļ	4.45, d,	1 00 5	0000	piperidino:	f	011	1770, 1630,	C ₂₂ H ₂₂ FN ₂ O ₃ (382.43)
106	4	J _{2,3} =5.2	D.62.C	m,2.1-2.0		7/	811	1250, 1200	req.: C: 09.09, H: 0.00, N: 7.33, F: 4.97; found: C: 69.25, H: 6.18, N: 7.30, F: 4.91
10f	Ĺ	4.37, d,	5.28. d	6.9-7.1. m	hexamethylenimino: 1.4-1.9+3.05-3.16+	76	115	1770, 1630, 1500, 1450.	C ₂₃ H ₂₄ FN ₂ O ₃ (396.46) rea.: C: 69.68, H: 6.36, N: 7.07, F: 4.79:
		$J_{23}=5.1$			3.25-3.55+3.65-3.80, m			1200, 830	found: C: 69.38, H: 6.48, N: 7.10, F: 4.49
^a solvent:	CDCI ₃ ;	^b N-CH ₃ : 3.02,	s, ^e N-CH ₂ C ₆ H	s: 4.35+5.2 (dd, J	_g =14.7-15, CH ₂), 7.2-7.4 (m, C	6H5); ^d Recrysta	llized from et	nyl acetate, ^c eth	yl acetate/diethylether

Yields, Melting Points, IR, NMR^a Data and Elemental Analysis of Compounds 9 and 10 Table 9

0 NR²R³ e.e. Synthesis of Aminomethylazetidines Regioselective Reactions of Mesyloxymethylazetidinones

Table 10 IR, NMR^a Data and Elemental Analysis of Compounds **11**

-NR²R³

E

È

	:m ⁻¹] Elemental analysis [%]	3100- C ₁₁ H ₁₉ CIN ₅ O*2HCI (339.69) 1495, req.: C: 49.50, H: 6.23, N: 8.25, CI: 31.31; 30 found: C: 49.21, H: 6.44, N: 7.89, CI: 30.97	3100- C ₁₅ H ₂₁ ClN ₂ O*2HCl (353.72) 1490, req.: C: 50.93, H: 6.55, N: 7.92, CI: 30.07; 30 found: C: 50.60, H: 6.60, N: 7.89, CI: 29.84	3100- C ₁₆ H ₂₃ ClN ₂ O*2HCl (367.75) 1495, req.: C: 52.26, H: 6.85, N: 7.62, Cl: 28.92; 30 found: C: 51.97, H: 6.94, N: 7.69, Cl: 28.65	3050- C ₁₄ H ₁₉ FN ₂ O*2HCI (323.24) 1495, req.: C: 52.02, H: 6.55, N: 8.67, CI: 21.94; 90 found: C: 51.75, H: 6.85, N: 8.60, CI: 21.60	3100- C ₁₅ H ₂₁ FN ₂ 0*2HCI (337.26) 1495, req.: C: 53.42, H: 6.87, N: 8.31, CI: 21.02; 20 found: C: 53.45, H: 7.02, N: 8.45, CI: 20.74	3100- Cl ₆ H ₂₁ FN ₂ O*2HCl (351.29) 1495, req.: C: 54.71, H: 7.17, N: 7.97, Cl: 20.18; 20 found: C: 54.40, H: 7.23, N: 8.04, Cl: 20.30
	IR [c	3540, 2400, 12	3550, 2400, 12	3540, 2500, 12	3500, 2400, 119	3500, 2400, 12	3500, 2400, 12
	NR^2R^3	pyrrolidino: 2.1+3.45-3.63, m	piperidino: 1.3-1.9+2.9-3.6, m	hexamethylenimino: 1.5-2.0+3.15-3.60, m	pyrrolidino: 2.12+3.45-3.60, m	piperidino: 1.6+1.83+3.0-3.2, m	hexamethylenimino: 1.5-2.0+3.15-3.60, m
11a-f	2",3",5",6"-H	6.88+7.28, m	7.00+7.32, m	6.93+7.30, m	6.93+7.03, m	6.86+7.01, m	6.98+7.11, m
	$2-CH_2$	3.68+4.55, dd, J _° =14	3.57+4.14, dd, J _§ =14.5	3.64+4.23, dd, J _° =14.5	3.75+4.42, dd, J₅=14	3.26+3.95, dd, J _e =14.3	3.68+4.11, dd, J _e =14.5
	4-H	4.06+4.55, dd, J _§ =11.5	3.91+4.47, dd, J _ያ =11.5	3.95+4.47, m	4.06+4.55, dd, J _§ =12	4.02+4.45, ddd, J _§ =11.2	3.90+4.43, ddd, J _{\$} =11.4
	3-H	5.30, ddd, J _{3,4} =4.5+6.5	5.25 , ddd, $J_{3,4}=5.0+6.0$	5.24, ddd, J _{3,4} =3.5+6.0	5.32, ddd, J _{3,4} =4.5+6.5	5.21, ddd, J _{3,4} =4.8+6.5	5.18, ddd, J _{3,4} =3.7+6.3
	2-H	$5.60, m, J_{2,3}=6.5, J_{2,CH2}=10+2.3$	5.48 , m, $J_{2,3}=6.0$, $J_{2,CH2}=9$	5.49, m, J _{2,3} =6.0, J _{2, Сн2} =8.7+2.8	5.54, m, J _{2,3} =6.5, J _{2, CH2} =9+2.5	5.36, ddd, $J_{2,3}=6.5$, $J_{2, CH2}=9.6+3.2$	$5.40, m, J_{2,3}=6.5, J_{2, CH2}=2.8+8.8$
	HN	8-11	9.5-11.2	9.81		6.3-7.9	9.66
	R	ū	G	G	Ц	ц	ц
	Comp.	11a	11b	11c	11d	11e	11f

^a Solvent: DMSO_{d6}+CDCl₃

3)	2C6H5
S	GH
щ Т	R4=
P	-
12a	3a

 $^{a} \text{ Solvent: DMSO}_{ac}, ^{b} \textit{N-CH}_{3}, ^{c} 2.96, s, ^{c} \textit{N-CH}_{2}C_{6}H_{5}, 3.56 + 3.86 (dd, J_{g} = 12.7, CH_{2}), 7.2 - 7.4 (m, C_{6}H_{5}), 7.2 (m, C_{6}H_{5}), 7.2 - 7.4 (m, C_{6}H_{5}), 7.2 (m,$

							R ¹ ⁵⁷ ⁶⁷	N HN N HN	R ² R ³			
							÷	4a-d				
Comp.	R	HN	2-H	3-H	4-H	2"3"5"6"-H	NR^2R^3	Yield [%]	Mp [°C]	IR [cm ⁻¹]	Elemental	Analysis [%]
14a	ū	3.08, brs	4.70, d, J _{2.3} =7.2	5.18, ddd, J _{3,4} =5.5+5.2	3.61-3.85, 5 m	6.64+7.21, m	piperidino: 1.50-1.75+3.20- 3.25+3.61-3.85, m	20	100	3630, 3420, 3020, 1630, 1500, 1230	C ₁₅ H ₁₉ CIN req.: C: 61.12, H: 6 found: C: 60.85, H:	X ₂ O ₂ (294.78) 50, N: 9.50, CI: 12.03; 6.64, N: 9.36, CI: 12.00
14b	ū	2.9, brs	4.67, d, J ₂₃ =7.1	5.17, q, J=7.1	3.10-3.85, m	6.63+7.20, m	hexamethylenimino: 1.4-1.9+3.10-3.85, n	25	Ш	3610, 2990, 1630, 1490, 1220, 1080	C ₁₆ H ₂₁ CIN req.: C: 62.23, H: 6 found: C: 61.95, H:	4202 (308.81) 855, N: 9.07, CI: 11.48; 6.86, N: 8.79, CI: 11.07
14c	ш	2.9, brs	4.66, d, J _{2.3} =7.2	5.15, dq, J=7.2	3.58-3.85, m	6.63-6.69+ 6.90-7.00, m	piperidino: 1.50-1.75+3.22- 3.27+3.58-3.85, m	26	129	3600, 3000, 1640, 1500, 1190, 1000	C ₁₅ H ₁₉ FN req.: C: 64.73, H: 6 found: C: 64.43, H:	202 (278.33) .88, N: 10.06, F: 6.83; .6.90, N: 9.99, F: 6.58
14d	ц.	3.0-3.9, brs	4.67, d, J _{2,3} =7.1	5.12-5.20	3.0-3.9, т	6.62-6.68+ 6.91-6.99, m	hexamethylenimino: 1.4-1.09+3.0-3.9, m	31	115	2990, 1645, 1495, 1200, 1190, 805	C ₁₆ H ₂₁ FN req.: C: 65.73, H: ⁷ found: C: 65.48, H:	202 (292.35) 7.24, N: 9.58, F: 6.50; : 7.24, N: 9.58, F: 6.15
^a Solvei	It: CDC	\mathbf{J}_3										
						Yields, Melting	Table g Points, IR, NMR ^{a,b} a	13 nd HRMS I	Data of Comp	oounds 15		
							R ¹	NR ONR	² R ³			
							а м Ф	a-c e	°. OCH ₃			
		Com	p. R'	2-H	3-H	4-H	4"-OMe 2",3",5",6	H-"6	NR^2R^3	Mp [°C	c] IR [cm ⁻¹]	HRMS m/z (EI)
		15a	ū	4.75, d, J₂₃=6.8	5.07, ddd, J _{3,4} =5.5+2.3	3.94+4.00, dd, J _g =8.3	6.70+7.2	4, m 3.8 1.50	sopropylamin 86+3.45+1.54 0+1.24+1.11,	io: ++ 175 .m	3070-2900, 1670, 1500, 1210, 790	C ₂₃ H ₂₉ N ₂ O ₃ Cl req.: 416.1867 found: 416.1871
		15b	ц	4.75, d, J ₂₃ =6.8	5.06, ddd, J _{3,4} =5.6+2.3	3.94+4.01, dd, J _g =8.3	6.72+6.9	dii 7, m 3.8 1.5	sopropylamin 88+3.45+1.54 0+1.24+1.12,	io: + 199-20 .m	3050-2900, 0 1650, 1500, 1210, 800	C ₂₃ H ₂₉ N ₂ O ₅ F req.: 400.2162 found: 400.2159
		15c	н	4.74, d, J ₂₃ =6.7	5.05, ddd, J _{3,4} =5.5+2.3	3.92+4.02, dd, J _g =8.3	3.76, s 6.71+6.8	3,m 3.8 1.5	sopropylamin 86+3,45+1.56 1+1.24+1.13,	io: + 154-15 . m	3100-2900, 6° 1670, 1500, 1440, 1210	C ₂₄ H ₃₂ N ₂ O ₄ req.: 412.2362 found: 412.2363

^a Solvent: CDCl₃,^b 4-methoxyphenyl: 6.45 (m, 3"5"-H), 6.80 (m, 2"6"-H), 3.75 (s, OCH₃), ^c Recrystallized from dioxane/diethylether

Table 12 Yields, Meting Points, IR, NMR^a Data and Elemental Analysis of Compounds 14

		Comp. R ¹ NH	16a ^b Cl 4.51, s J _{2.}	16b ^b Cl 4.33, s J _{2.C}	16c^b CI 4.25, s J ₃ ,	16d° F 4.35, s	16e^c F 4.27, s J ₂ ,	16f ⁴ OCH ₃ 4.51, s	16g^d OCH ₃ 4.60, s	16h ^d OCH ₃ 4.62, s J ₂₂	16i ^d OCH ₃ ~4, s J _{2,}	16j ^d OCH ₃ 4.25, s J ₂₂
		2-H	3.57, ddd, $J_{2,3}=2.2$, $_{CH2}=3.6+9.9$	3.58, ddd, $J_{2,3}=2.2$, $H_{2}=3.7+10.0$	3.42, ddd, J _{2,3} =2.3, _{CH2} =8.4+5.5	3.57 , ddd, $J_{2,3}=2.3$, $G_{CH2}=3.5+9.8$	3.43, ddd, $J_{2,3}=2.4$, $_{CH2}=8.0+5.8$	3.54, ddd, $J_{2,3}=2.2$, $_{12}=3.3+10.0$	3.42, dt, J _{2,3} =2.4, J _{2,CH2} =6.8	3.48, ddd, J _{2.3} =2.2, _{CH2} =3.6+9.6	3.75, ddd, $J_{2,3}=2.4$, $_{CH2}=4.3+9.0$	3.48, ddd, J _{2.3} =2.5, _{СН2} =8.8+4.5
		2-CH ₂	2.48+3.03, dd, J _s =11.8	2.48+2.79, dd, J _e =12.1	2.69+2.72, dd, J _s =13.2	2.51+3.05, dd, J _s =11.8	$2.72+2.74$, dd, $J_g=13.2$	$2.49+3.08$, dd, $J_g=11.6$	2.75, d,	2.63+2.78, dd, J₅=12.4	2.77+2.86, dd, J _e =12.7	2.93+3.00, dd, J _§ =11.8
		3-H	4.61, ddd, J _{3,4} =3.9+4.3	4.58, ddd, J _{3,4} =3.3+4.2	4.66, ddd, J _{3,4} =4.0+4.5	4.56, ddd, J _{3,4} =3.8+4.3	4.61, ddd, J _{3,4} =4.0+4.5	4.51, ddd, J _{3,4} =3.7+4.0	4.58, ddd, J _{3,4} =4.2+4.5	4.54, ddd, J _{3,4} =4.0+4.1	4.53, ddd, J _{3,4} =4.8+4.5	4.57, ddd, J _{3,4} =4.4+4.5
H ₃ CO		4-H	2.95+3.07, dd, J _s =17.0	$2.97+3.07$, dd, $J_g=17.2$	2.98+3.06, dd, J _s =17.0	2.94+3.04, dd, J _g =17.0	$2.98+3.04$, dd, $J_{g}=17.0$	$2.96+3.01$, dd, $J_{g}=17.0$	2.99+3.02, dd, J _g =17.0	2.96+3.02, dd, J _g =17.0	2.89+2.93, dd, J _g =17.0	2.94+2.99, dd, J _§ =17.0
10 4	16a-j	5,7,8-H	6.51+6.65+ 6.60, m	6.51+6.65+ 6.61, m	6.52+6.64+ 6.56, m	6.52+6.65+ 6.60, m	6.52+6.64+ 6.55, m	6.52+ 6.64+ 6.59, m	6.53+6.63+ 6.55, m	6.52+6.6 4 + 6.58, m	6.46+6.60+ 6.47, m	6.52+6.64+ 6.59, m
		6-0CH3	3.71, s	3.71, s	3.70, s	3.71, s	3.70, s	3.71, s	3.71, s	3.71, s	3.69, s	3.71, s
		NR^2R^3	pyrrolidino: 2.62+2.49+ 1.78, m	morpholino: 3.72+2.57+2.41, m	diisopropylamino: 3.00+1.02+0.95, m	pyrrolidino: 2.63+2.50+ 1.80, m	diisopropylamino: 3.00+1.02+0.96, m	pyrrolidino: 2.62+2.48+ 1.78, m	diisopropylamino: 3.01+1.02+ 0.97, m	diethylamino: 2.61+2.49+ 1.00, m	dibenzylamino: 3.51+3.72+ 7.15-7.3, m	benzylamino: 3.81+7.2-7.35, m
		Mp [°C]	108	131	118	06	°00	86	85	87	lio	78-79
		IR [cm ⁻¹]	3050-2900, 1510, 1490, 1250, 1020	3030-2900, 1510, 1490, 1270, 1240, 1110, 1050	3480, 3050- 2900, 1500, 1220, 800	3050-2900, 1500, 1250, 12020, 1020	3450, 3020- 2900, 1500, 1250	3500, 1490, 1250, 1200	3050-2950, 1505, 1250, 1020, 810	3500, 3050- 2900, 1500, 14890, 1210	3200-2900, 1500, 1220, 1010, 800	3200-2900, 1490, 1210, 1010, 800
		HRMS m/z (EI)	C ₂₁ H ₂₅ N ₂ O ₂ Cl req.: 372.1604 found: 372.1547	C ₂₁ H ₂₅ N ₂ O ₃ Cl req.: 388.1554 found: 388.1553	C ₂₃ H ₃₁ N ₂ O ₂ Cl req.: 402.2074 found: 402.2059	C ₂₁ H ₂₅ N ₂ O ₂ F req.: 356.1900 found: 356.1901	C ₂₃ H ₃₁ N ₂ O ₂ F req.: 386.2369 found: 386.2363	C ₂₂ H ₂₈ N ₂ O ₃ req.: 368.2099 found: 368.2102	C4H34N2O3 req.: 398.2569 found: 398.2560	C ₂₂ H ₃₀ N ₂ O ₃ req.: 370.2256 found: 370.2257	C ₃₂ H ₃₄ N ₂ O ₃ req.: 494.2569 found: 494.2570	C ₂₅ H ₂₈ N ₂ O ₃ req.: 404.2099 found: 404.2101

^a Solvent: CDCl₃; ^b 4-chlorophenoxy: 6.88+7.22, m, ^c 4-fluorophenoxy: 6.90+6.95, m, ^d 4-methoxyphenoxy: 6.81+6.87, m, 3.76, s (OCH₃); ^e Recrystallized from hexane

Yields, Melting Points, IR, NMR $^{\rm ab}$ and HRMS Data of Compounds 16

Table 14

Synthesis of Aminomethylazetidines Regioselective Reactions of Mesyloxymethylazetidinones

[3] J. A. Christensen and R. F. Squires, DE 240413; eidem, US 3912743; US 4007196 (1974, 1975, 1977 all to Ferrosan); *Chem. Abstr.*, **81**, 152011q (1974) for each patent.

[4] P. Melloni, A. D. Torre, M. Meroni, A. Ambrosini and A. C. Rossi, *J. Med. Chem.*, **22**, 183-191 (1979).

[5] G. Balboni, M. Marastoni, S. Merighi, P. A. Borea and R. Tomatis, *Eur. J. Med. Chem.*, **35**, 979-988 (2000).

[6] I. Ojima, M. Zhao, T. Yamato, K. Nakahashi, J. Org. Chem., 56, 5263-5277 (1991).

[7] A. Sápi, F. Bertha, J. Fetter, M. Kajtár-Peredy, Gy. Keserű and K. Lempert, *Tetrahedron*, **52**, 771-782 (1996).

[8] F. Bertha, J. Fetter, M. Kajtár-Peredy, K. Lempert and G. Czira, *Tetrahedron*, **54**, 15227-15242 (1998).

[9] F. Bertha, J. Fetter, M. Kajtár-Peredy and K. Lempert, Tetrahedron, 55, 5567-5580 (1999).

[10] É. Boros, F. Bertha, A. Feller, J. Fetter, Gy. Simig, G. Czira and M. Kajtár-Peredy, *Regioselective reactions of meszloxzmethzlayetidinones with nucleophiles I. Cleavage of the azetidinone ring, azetidinoneaziridine ring transformations*, Accepted to J. Heterocyclic Chem.

[11] S. Kano, T. Ebata and S. Shibuya, *Heterocycles*, **4**, 1649 (1976).

[12] S. Kano, T. Ebata and S. Shibuya, J. Chem. Soc., Perkin Trans., 1 2105 (1980).

[13] S. Kano, S. Shibuya and T. Ebata, *Heterocycles*, **15**, 1011 (1981).

[14] K. W. Anderson and J. J. Tepe, Org. Lett., 4, 459-461 (2002).